
On the Viability of Checkpoint Compression for
Extreme Scale Fault Tolerance

Dewan Ibtesham1, Dorian Arnold1, Kurt B. Ferreira2, and Patrick G. Bridges1

1 University of New Mexico, Albuquerque, NM 87131, USA,
l nw sa m.r,e gda sd ei c u u.e @no ,]n bd drd[

2 Sandia National Laboratories?, Albuquerque, NM
s gae vr @ indf a .e ob rk

Abstract. The increasing size and complexity of high performance com-
puting (HPC) systems have lead to major concerns over fault frequencies
and the mechanisms necessary to tolerate these faults. Previous studies
have shown that state-of-the-field checkpoint/restart mechanisms will
not scale sufficiently for future generation systems. In this work, we ex-
plore the feasibility of checkpoint data compression to reduce checkpoint
commit latency and storage overheads. Leveraging a simple model for
checkpoint compression viability, we conclude that checkpoint data com-
pression should be considered as a part of a scalable checkpoint/restart
solution and discuss the types of improvements necessary to make check-
point data compression more viable.

Keywords: Fault tolerance, Checkpoint compression

1 Introduction

Over the past few decades, high-performance computing (HPC) systems have
increased in size and complexity, and these trends are expected to continue. On
the most recent Top 500 list [31], 223 (or 44.6.%) of the 500 entries have greater
than 8,192 cores, compared to 15 (or 3.0%) just 5 years ago. Also from this
most recent listing, four of the systems are larger than 200K cores; an additional
six are larger than 128K cores, and another six are larger than 64K cores. The
Lawrence Livermore National Laboratory is scheduled to receive its 1.6 million
core system, Sequoia [2], this year. Further, exascale systems are projected to
have on the order of tens to hundreds of millions of cores within the current
decade [17].

It also is expected that future high-end systems will increase in complexity;
for example, heterogeneous systems like CPU/GPU-based systems are expected
to become much more prominent. Increased complexity generally suggests that
individual components are likely to be more failure prone. Furthermore, mean
time between failures (MTBF) is inversely proportional to system size, so in-
creased system sizes also will contribute to extremely low system MTBF. In
?

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

recent studies, Schroeder and Gibson indeed conclude that system failure rates
depend mostly on system size, particularly, the number of processor chips in
the system. They also conclude that if the current HPC system growth trend
continues, expected system MTBF for the biggest machines on the Top 500 lists
will fall below 10 minutes in the next few years [13, 28]

Checkpoint/restart [6], is perhaps the most commonly used HPC fault-tolerance
mechanism. In checkpoint/restart protocols, during normal operation, process
(and communication) state is periodically recorded to persistent storage devices
that survive tolerated failures. When a failure occurs, effected processes roll back
to the point represented by their most recent stored state – thereby reducing the
amount of lost computation. Rollback recovery is a well studied, general fault
tolerance mechanism. However, recent studies [8, 13] predict poor utilization for
applications running on imminent systems and the need for resources dedicated
to reliability.

If checkpoint/restart protocols are to be employed for future extreme scale
systems, checkpoint/restart overhead must be reduced. For the problem of check-
point commit or saving an application checkpoint, three general strategies can be
considered: (1) reducing checkpoint information, for example, using application-
directed checkpoints; (2) reducing checkpoint data, for example, using incremen-
tal checkpointing; or (3) reducing the time to commit checkpoint data to stable
storage, for example focusing on checkpoint I/O.

This work focuses on the second strategy of reducing the amount of check-
point data, particularly via checkpoint compression. We have one fundamental
goal: to understand the viability of checkpoint compression for the types of sci-
entific applications expected to run at large scale on future generation HPC sys-
tems. Using several mini-applications or mini apps from the Mantevo Project [15]
and the Berkeley Lab Checkpoint/Restart (BLCR) framework [14], we explore
the feasibility of state-of-the-field compression techniques for efficiently reduc-
ing checkpoint sizes. We use a simple checkpoint compression viability model to
determine when checkpoint compression is a sensible choice, that is, when the
benefits of data reduction outweigh the drawbacks of compression latency.

In the next section, we present a general background of checkpoint/restart
methods, after which we describe previous work in checkpoint compression and
our checkpoint compression viability model. In Section 4, we describe the ap-
plications, compression algorithms and the checkpoint library that comprise our
evaluation framework as well as our experimental results. We conclude with a
discussion of the implications of our experimental results for future checkpoint
compression research.

‘

2 Checkpoint/Restart Background

In checkpoint-based protocols, checkpoints or snapshots of a process’s state are
periodically committed to stable storage. Process state comprises all the state
necessary to run a process correctly including its memory and register states. If

a process failure is detected, the failed process’ most recent checkpoint is used to
restore (a new incarnation of) the failed process to the intermediate state saved
in the checkpoint. Several optimizations have been proposed to improve basic
checkpointing including:

– Incremental checkpointing [3, 4, 7, 21, 25]: the operating system’s memory
page protection facilities are used to detect and save only pages that have
been updated between consecutive checkpoints. To protect against saving
duplicate incremental data, hashing using GPUs has also been explored [11].

– Forked checkpointing [7, 10, 18, 20, 21, 23]: the application process forks a
checkpointing process allowing the original process to continue while the
forked process concurrently commits the checkpoint state to stable storage.
If the fork system call implements copy-on-write semantics, both processes
efficiently share the same address space until the original process updates
a memory segment at which point a copy is made so that the checkpoint-
ing process has a copy of the memory state at the time the checkpoint was
initiated.

– Remote checkpointing [30, 32]: Remote checkpointing leverages network re-
sources to save checkpoints to remote checkpoint servers providing perfor-
mance gains in environments where I/O bandwidth to the network is more
abundant than that to local storage devices. Additionally, remotely stored
checkpoints allow systems to survive non-transient node failures.

While checkpoint/restart protocols are among the most well-known fault tol-
erance techniques, performance drawbacks make them unsuitable for large scale
computing environments with hundreds of thousands of components or more.
As the number of computational nodes an application uses increase, so does
the application’s global checkpoint overhead. At the same time, the decreased
MTBF that results from the increased number of nodes suggests that an appli-
cation should take checkpoints more frequently to minimize work loss. Recent
studies [8, 29] have suggested that the combination of these factors will result in
unacceptably poor application utilization approaching 0% “useful work”.

3 Checkpoint Compression

3.1 Previous Work

To the best of our knowledge, there has not been much research towards the goal
of reducing checkpoint sizes and commit times that consider data compression.
Li and Fuchs implemented a compiler-based checkpointing approach(CATCH),
which exploited compile time information to compress checkpoints [19]. The re-
sults from their CATCH compiler, which used LZW data compressor, showed
that a compression ratio of over 100% was necessary to achieve any significant
benefit compared to the time overhead. Plank and Li proposed in-memory com-
pression and showed that, for their computational platform, compression was
beneficial if a compression factor greater than 19.3% could be achieved [26].

Plank et al also proposed differential compression to reduce checkpoint sizes for
incremental checkpoints [27]. Moshovos and Kostopoulos used hardware-based
compressors to improve checkpoint compression ratios [22].

3.2 A Checkpoint Compression Viability Model

Intuitively, checkpoint compression is a viable technique when benefits of check-
point data reduction outweigh the drawbacks of the time it takes to reduce the
checkpoint data. More conceptually, checkpoint compression is viable when: 3

compression latency + time to commit < time to commit
compressed checkpoint uncompressed checkpoint

or

|checkpoint|
compression-speed

+
(1− compression-factor)× |checkpoint|

commit-speed
<

|checkpoint|
commit-speed

where |checkpoint| is the size of the original, compression-factor is the percent-
age reduction due to data compression, compression-speed is the rate of data
compression, and commit-speed is the rate of checkpoint commit (including all
associated overheads). The last equation can be reduced to:

commit-speed
compression-speed

< compression-factor (1)

In other words, if the ratio of the checkpoint commit speed to checkpoint com-
pression speed is less than the compression factor, checkpoint data compression
provides an overall time (and space) performance reduction. In the rest of this
paper, we explore this concept for practical scenarios.

4 Evaluating Checkpoint Compression

The goal of this work is to evaluate the use of state-of-the-field algorithms for
compressing checkpoint data from applications that are representative of those
expected to run at large scale on current and future generation HPC systems.

4.1 The Applications

We chose four mini-applications or mini apps4 from the Mantevo Project [15],
namely HPCCG version 0.5, miniFE version 1.0, pHPCCG version 0.4 and
phdMesh version 0.1.
3 Plank et al pose a similar concept [26].
4 Mini apps are small, self-contained programs that embody essential performance

characteristics of key applications.

The first three are implicit finite element mini apps and phdMesh is an ex-
plicit finite element mini app. HPCCG is a conjugate gradient benchmark code
for a 3D chimney domain that can run on an arbitrary number of processors.
This code generates a 27-point finite difference matrix with a user-prescribed
sub-block size on each processor. miniFE mimics the finite element generation
assembly and solution for an unstructured grid problem. pHPCCG is related to
HPCCG, but has features for arbitrary scalar and integer data types, as well as
different sparse matrix data structures. PhdMesh is a full-featured, parallel, het-
erogeneous, dynamic, unstructured mesh library for evaluating the performance
of operations like dynamic load balancing, geometric proximity search or parallel
synchronization for element-by-element operations.

For the three implicit finite element mini apps, we chose a problem size
of 100x100x100. Both HPCCG and pHPCCG were run with openMPI with 3
processes while miniFE was run with 2 processes. phdMesh was run without
MPI support on a problem size of 5x6x5.

4.2 The Checkpoint Library

The Berkeley Lab Checkpoint/Restart library (BLCR) [14], a system-level in-
frastructure for checkpoint/restart, is perhaps the most widely available check-
point/restart library available and is deployed on several HPC systems. For
our experiments, we obtain checkpoints using BLCR. Furthermore, we use the
OpenMPI [12] framework which has the capability to leverage BLCR for fault
tolerance.

4.3 The Compression Algorithms

For this study, we focused on the popular compression algorithms investigated
in Morse’s comparison of compression tools [16]. We settled on the following
subset, which appeared to performed well in preliminary tests:

– 7zip[1]: 7zip is based on LZMA 7zip uses LZMA(Lempel-Ziv-Markov chain
Algorithm) [24] to compress data. The algorithm uses a dictionary compres-
sion scheme similar to LZ77 and has a very high compression ratio. Each of
these tools have different parameters to achieve faster compression time or
better compression ratio.

– zip: ZIP is an implementation of Deflate [5], a lossless data compression al-
gorithm that uses LZ77 [33] compression algorithm and Huffman coding. It is
highly optimized in terms of both speed and compression efficiency. The ZIP
algorithm treats all types of data as a continuous stream of bytes. Within
this stream, duplicate strings are matched and replaced with pointers fol-
lowed by replacing symbols with new, weighted symbols based on frequency
of use.

– bzip2: BZIP2 is an implementation of the Burrows-Wheeler Transform [9]
which utilizes a technique called block-sorting to permute the sequence of

bytes to an order that is easier to compress. The algorithm converts frequently-
recurring character sequences into strings of identical letters and then applies
move to front transform and Huffman coding.

– pbzip2[9]: A multi-threaded implementation of bzip2 is called parallel bzip2(PBZIP2)
uses the same technique as bzip2 but can leverage multi-CPU and multi-core
computers giving speed improvement. We have used two parameters to con-
trol the compression. The first parameter defines the BWT block size in kB
and the second parameter defines the file block size in kB

– rzip: Rzip can take advantage of very long distance redundancy as it has
a very large buffer. It finds and encodes large chunk of duplicate data and
then use bzip2 as backend to compress the encoding.

For this study, we tested other tools that did not exhibit good performance
in our case studies, including gzip.

4.4 The Tests

Each test consists of a mini app, a parameterized compression algorithm5, and
five successive checkpoints. For HPCCG the checkpoint interval was 5 seconds,
for miniFE and pHPCCG it was 3 seconds and for phdMesh the 5 checkpoints
were taken randomly. There was no particular logic in varying the checkpoint in-
terval except for making sure to have the checkpoints spread uniformly across the
execution time of the application. The BLCR library is used to collect the mini
app checkpoints, and then we use the selected algorithms to perform checkpoint
compressions.

For testing, we used a 64-bit four core Intel Xeon processor with a clock
speed of 2.33 GHz and 2 GB of memory running a Linux 2.6.32 kernel. Our
software stack consists of OpenMPI-1.4.1 configured with BLCR version 0.8.2.
The compression tools used were ZIP 3.0 by Info-ZIP, rzip version 2.1, bzip2
1.0.5, PBZIP2 1.0.5 and p7zip.

4.5 Compression Results

For each application, the average uncompressed checkpoint size ranged from 311
MB to 393 MB. Our first set of results, presented in Figure 1, demonstrate
how effective the various algorithms are at compressing checkpoint data. With
the exception of the Rzip(-0), all the algorithms achieve a very high compres-
sion factor of about 70% or higher, where compression factor is computed as:
1− compressed size

uncompressed size . This means, then that the primary distinguishing factor be-
comes the compression speed, that is, how quickly the algorithms can compress
the checkpoint data.

Figure 2 shows how long the algorithms take to compress the checkpoints.
In general, and not surprisingly, the parallel implementation of bzip2, pbzip2,
generally outperforms all the other algorithms.

5 For each algorithm, a different set of parameter values constitute a different test.

Fig. 1. Checkpoint compression ratios for the various algorithms and applications.

5 Discussion

In the previous section, we presented the empirical results of our checkpoint
compression. We conclude this paper with a discussion of the implications of
these results. We also known limitations and shortcomings of this work that we
plan to address as we continue this project.

This work seeks to answer the question, “Should checkpoint compression be
considered as a potentially feasible optimization for large scale scientific appli-
cations?” Based on our preliminary experiments, we believe the answer to this
question is “Yes.” Based on Equation 1, if the product of checkpoint commit
speed (or throughput) is less than the product of compression factor and com-
pression speed, checkpoint compression will provide a time (and space) perfor-
mance benefit. Figure 3 shows this product as derived from the data in Section 4.
Even with many optimizations and high performance parallel file systems that
stripe large writes simultaneously across many disks and file servers, it is diffi-
cult to achieve disk commit bandwidths on the order of ones of Gigabits/second.
Figure 3 shows that in many cases, a file system must achieve at least about 14
Gigabits/second and as much as 56 Gigabits/second to compete with our check-
point compression strategy. Furthermore, we can explore additional strategies,
like using multicore CPUs or even GPUs, to accelerate compression performance.

5.1 Current Limitations

While the results of this preliminary study are promising, we observe several
shortcomings that we plan to address. These shortcomings include:

– Testing on larger applications: while the Mantevo mini applications are
meant to demonstrate the performance characteristics of their larger coun-
terparts, we plan to evaluate the effectiveness of checkpoint compression for
these larger applications.

Fig. 2. Checkpoint compression times for the various algorithms and applications.

– Testing at larger scales: Our current tests are limited to very small scale
applications. We plan to extend this study to applications running at much
larger scales, on the order of tens or even hundreds of thousands of tasks.
Qualitatively, we expect similar results since compression effectiveness is
primarily a function of the compression performance for individual process
checkpoints.

– Checkpoint intervals: For these tests, in order to keep run times man-
agable, we used a relatively small checkpoint intervals. We plan to evaluate
whether compression effectiveness changes as applications execute for longer
times. We have no reason to expect significant qualitative differences.

References

1. 7zip project official home page. http://www.7-zip.org.
2. ASC Sequoia. https://asc.llnl.gov/computing\ resources/sequoia (visited

May 2011).
3. G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and R. Rugina. Compiler-

enhanced incremental checkpointing for openmp applications. In Proceedings of
the 2009 IEEE International Symposium on Parallel&Distributed Processing, pages
1–12, Washington, DC, USA, 2009. IEEE Computer Society.

4. Y. Chen, K. Li, and J. S. Plank. Clip: A checkpointing tool for message-passing
parallel programs. In SuperComputing ’97, San Jose, CA, 1997.

5. P. Deutsch. Deflate compressed data format specification.
6. E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408, 2002.

7. E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel. The performance of consistent
checkpointing. In 11th IEEE Symposium on Reliable Distributed Systems, Houston,
TX, 1992.

Fig. 3. Checkpoint Compression Viability: Unless, checkpoint commit rate exceeds the
compression speed × compression factor product (y-axis), checkpoint compression is a
good solution.

8. E. N. Elnozahy and J. S. Plank. Checkpointing for peta-scale systems: A look into
the future of practical rollback-recovery. IEEE Transactions on Dependable and
Secure Computing, 1(2):97–108, April-June 2004.

9. J. G. Elytra. Parallel data compression with bzip2.

10. S. I. Feldman and C. B. Brown. Igor: A system for program debugging via re-
versible execution. In 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel
and Distributed Debugging (PADD ’88), pages 112–123, New York, NY, 1988. ACM
Press.

11. K. B. Ferreira, R. Riesen, R. Brightwell, P. G. Bridges, and D. Arnold. Libhashckpt:
Hash-based incremental checkpointing using GPUs. In Proceedings of the 18th
EuroMPI Conference, Santorini, Greece, September 2011 [to appear].

12. E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and
T. Woodall. Open mpi: Goals, concept, and design of a next generation mpi
implementation. In D. Kranzlmüller, P. Kacsuk, and J. Dongarra, editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface, volume 3241
of Lecture Notes in Computer Science, pages 353–377. Springer Berlin / Heidelberg,
2004. 10.1007/978-3-540-30218-6 19.

13. G. Gibson, B. Schroeder, and J. Digney. Failure tolerance in petascale computers.
CTWatch Quarterly, 3(4), November 2007.

14. P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (blcr) for linux
clusters. Journal of Physics: Conference Series, 46(1), 2006.

15. M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Ed-
wards, A. Williams, M. Rajan, E. R. Keiter, H. K. T. quist quist quist quist, and
R. W. Numrich. Improving performance via mini-applications. Technical Report
SAND2009-5574, Sandia National Laboratory, 2009.

16. K. G. M. Jr. Compression tools compared. (137), September 2005.

17. P. Kogge. ExaScale Computing Study: Technology Challenges in Achieving Ex-
ascale Systems. Technical report, Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), September 2008.

18. J. Leon, A. L. Fisher, and P. Steenkiste. Fail-safe pvm: A portable package for
distributed programming with transparent recovery. Technical Report CMU-CS-
93-124, Carnegie Mellon University, Pittsburgh, PA, February 1993.

19. C.-C. Li and W. Fuchs. Catch-compiler-assisted techniques for checkpointing. In
Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International
Symposium, pages 74–81, jun 1990.

20. K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpoint for
parallel programs. In 2nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP ’90), pages 79–88, Seattle, Washington, 1990.
ACM.

21. K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent checkpointing
for parallel programs. IEEE Transactions on Parallel and Distributed Systems,
5(8):874–879, August 1994.

22. A. Moshovos and A. Kostopoulos. Cost-effective, high-performance giga-scale
checkpoint/restore. Technical report, University of Toronto, November 2004.

23. D. Z. Pan and M. A. Linton. Supporting reverse execution for parallel programs.
In 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed De-
bugging (PADD ’88), pages 124–129, Madison, WI, 1988. ACM Press.

24. I. Pavlov. Lzma sdk (software development kit), 2007.
25. J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing

under unix. In USENIX Winter 1995 Technical Conference, pages 213–224, New
Orleans, LA, January 1995.

26. J. S. Plank and K. Li. ickp: A consistent checkpointer for multicomputers. Parallel
& Distributed Technology: Systems & Applications, IEEE, 2(2):62–67, 1994.

27. J. S. Plank, J. Xu, and R. H. B. Netzer. Compressed differences: An algorithm
for fast incremental checkpointing. Technical Report CS-95-302, University of
Tennessee, August 1995.

28. B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance
computing systems. In Dependable Systems and Networks (DSN 2006), Philadel-
phia, PA, June 2006.

29. B. Schroeder and G. A. Gibson. Understanding failures in petascale computers.
Journal of Physics Conference Series, 78(1), 2007.

30. G. Stellner. Cocheck: Checkpointing and process migration for mpi. In Interna-
tional Parallel Processing Symposium, pages 526–531, Honolulu, HI, April 1996.
IEEE Computer Society.

31. Top 500 Supercomputer Sites. http://www.top500.org/ (visited May 2011).
32. V. C. Zandy, B. P. Miller, and M. Livny. Process hijacking. In 8th International

Symposium on High Performance Distributed Computing (HPDC ’99), pages 177–
184, Redondo Beach, CA, August 1999.

33. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
Information Theory, IEEE Transactions on, 23(3):337–343, May 1977.

